

Page 1 of 9

TEST REPORT

Applicant: Address:

,STEK I

Flashbay Electronics Building2 ,Jixun Industrial Park ,Xinjiao ,Dong'ao Village ,Shatian Town ,Huiyang District ,Huizhou City , Guangdong Province,P.R.China

The following sample(s) was/were submitted and identified on behalf of the client as:

Sample name:	USB Flash Drives
Model:	Nature/NA
Manufacturer & Factory:	Flashbay Electronics
Address:	Building2 ,Jixun Industrial Park ,Xinjiao ,Dong'ao Village ,Shatian 🎺
	Town ,Huiyang District ,Huizhou City , Guangdong Province,P.R.China

 Sample No.:
 S241022030007

 Sample Received Date:
 2024-10-24

 Testing Period:
 2024-10-24~ 2024-11-08

Test Requirement:

Conclusion

Pass

AT EK TU

As specified by client, to determine the Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium (Cr(VI)), Polybrominated Biphenyls(PBBs), Polybrominated Diphenyl Ethers(PBDEs), Bis-(2-ethylhexyl) Phthalate (DEHP), Benzyl butyl Phthalate (BBP), Dibutyl Phthalate (DBP) and Diisobutyl Phthalate(DIBP)contents in the submitted sample(s) in accordance with RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Test Result(s): Please refer to the following page(s);

Test Method: Please refer to the following page(s);

Nina.Car May Li

Reviewed by:

Luetta Mo

Compiled by:

Approved by:

Date:

2024-11-11

ATEL Til

Sample Description:

Hill	No.	Sample name	Description	
NO. 1 2 3	1		Yellow wood of shell	
	2	-	Silver metal clasp of shell	
	3		Silver metal ring of shell	
	4	USB Flash Drives	Transparent colloid of shell	11 CT
	5		Silver metal magnet of shell	4
	6		Black plastic shell of USB interface	
	7	- Juit	Silver metal shell of USB interface	
👗 8		Black PCB of USB interface		
ATEK His				

Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium (Cr(VI)), Polybrominated Siphenyls (PBBs), Polybrominated Diphenyl Ethers(PBDEs)

with the	Part No.	Part No. Test Items		XRF Screening Result(mg/kg)	Chemical Test Result(mg/kg)	Conclusion
		Pb		BL	/	
"Fit"	-		Cd	BL	/	
45	1 -		Hg	BL	/	Pass
	I	Cr	Cr(VI)	BL	/	Fass
		Br	PBBs	/	<u> </u>	
		DI	PBDEs	/	"Yill I	4
	_		Pb	OL	19608#1	_
	_		Cd Yim	IN	20	_
	2		Hg	BL	/	Pass
1 Him	2	Cr Br	Cr(VI)	BL	/	F 055
with Hill			PBBs	PBBs / PBDEs	/	
			PBDEs		/	
			Pb	BL	/	A N
	3		Cd	BL	<u> </u>	
			Hg	BL	At N 1	Pass
		Cr	Cr(VI)	BL		1 035
WIEK JU		Br	PBBs	BL	/	
		PBDEs	DL	/		
	-		Pb	BL	/	
	4	0		BL	/	
			Hg	lg BL		Pass
		Cr	Cr(VI)	BL	<u> </u>	
		Br	PBBs	BL	Kill /	4
		וט	PBDEs	DL		

ANTEK JEIN

NTEK 北测 [®]					MTHEL TUN	with	
Report No.: S24102203006001					ATT	Page 3 of 9	
©			Pb	BL	/		
Hill	-		Cd	BL	/		
ATEK HIN	5	-	Hg	BL	/	Pass	
4.	5	Cr	Cr(VI)	BL	/	Pass	
		Br	PBBs	- /	/	at a Kine	
		Ы	PBDEs		<u> </u>		
			Pb	BL	AL YEAR		
	-		Cd 👗	BL			
	6		Hg A	BL		Pass	
	0	Cr	Cr(VI)	BL	/	Pass	
A Jun	-	Br	PBBs	BBs	/		
WTEX HIS		Ы	PBDEs BL	BL	/		
	_		Pb	BL	/	, Č	
			Cd	BL	/	at a	
	7	7	Hg	BL		Pass	
	-	Cr	Cr(VI)	BL		Pass *	
		Br	PBBs	PBBs / /			
•		DI	PBDEs		/		
X ill			Pb	BL	/		
.et			Cd	BL	/		
KYTEK TIM	8		Hg	BL	/	– Pass 👗	
	Ö	Cr	Cr(VI)	BL	/		
		Br PBBs	PBBs	BL	N.D.		
		Ы	PBDEs	DL	N.D.	- Pass	
- Trin			ANTER JUN		NIEL		

Bis-(2-ethylhexyl) Phthalate (DEHP), Benzyl butyl Phthalate (BBP), Dibutyl Phthalate (DBP) and Diisobutyl Phthalate(DIBP)

	Test Items	Result(mg/kg)				
	Test liens	4	6	8		
	Bis-(2-ethylhexyl) Phthalate (DEHP)	N.D.	N.D.	N.D.		
	Benzyl butyl Phthalate (BBP) 📩	N.D.	N.D.	N.D.		
	Dibutyl Phthalate (DBP)	N.D.	N.D.	N.D.		
	Diisobutyl Phthalate(DIBP)	N.D.	N.D.	N.D.		
TEK Him	Conclusion	Pass	Pass	Pass		
ATT						

NTEK 北测

Report No.: S24102203006001

- Note:
- 1.N.D. = Not Detected (<MDL)

MDL = Method Detection Limit

1mg/kg = 1ppm = 0.0001%

/=Not Regulated or Not Applicable

WTEX TE

NTEK TE

2. BL = Below the XRF screening limit

IN = Further chemical test will be conducted when the screening result inconclusive A

OL = Further chemical test will be conducted while the result is above the screening limit. 3. For metal samples, the sample is negative for Cr(VI), if the Cr(VI) concentration is less than

ATEK Til

NTEX TIM

NTEK TE

Page 4 of 9

0.10 µg/cm², the coating is considered a non- Cr(VI) based coating;

The sample is positive for Cr(VI), if the Cr(VI) concentration is greater than 0.13 $\mu q/cm^2$, The sample coating is considered to contain Cr(VI);

The result is considered to be inconclusive, the Cr(VI) concentration is between the $0.10 \ \mu g/cm^2$ and $0.13 \ \mu g/cm^2$, unavoidable coating variations may influence the determination. Because the storage condition and production date of the sample are not known, the test results of the sample of hexavalent chromium can only represent the state of hexavalent chromium in the samples tested.

Remark:

1. When conducting the test for PBBs&PBDEs, XRF was introduced to screen Br Exclusively; When conducting the test for Hexavalent Chromium, XRF was introduced to screen Chromium exclusively.

2. According to the client's statement, the material of the sample(s) comply with RoHS directive 2011/65/EU Annex III Exemption, Corresponding exemption clause: WTEX W

AT EX III

AT TEK TEN

#1 6(c) Lead is exempted as copper alloy containing up to 4% lead by weight.

NTEX TU

WTEK TIM

AT EX TIN

NTEK

NYTEK JU

FEX JUI

ATEK II

WTEK TE

Page 5 of 9

NTEKT

NTEK TU

NTEK TE

ANTER TIM

Test Method:

1. With reference to IEC 62321-1: 2013 Ed.1.0, IEC 62321-2:2021 Ed.2.0, IEC 62321-3-1:2013 Ed.1.0. XRF screening limits in mg/kg for regulated elements in various matrices.

Element	Limit of IEC 62321-3-1:2013 Ed.1.0 (mg/kg)				
	Polymers	Metals	Composite material		
Pb	BL≤(700-3σ) <Χ	BL≤(700-3σ) <x _å<="" th=""><th>BL≤(500-3σ)<Χ</th></x>	BL≤(500-3σ)<Χ		
	<(1300+3σ)≤OL	<(1300+3σ)≤OL	<(1500+3σ)≤OL		
Cd	BL≤(70-3σ) <x <<="" td=""><td>BL≤(70-3σ)<x <<="" td=""><td>LOD <x<(150+3σ)< td=""></x<(150+3σ)<></td></x></td></x>	BL≤(70-3σ) <x <<="" td=""><td>LOD <x<(150+3σ)< td=""></x<(150+3σ)<></td></x>	LOD <x<(150+3σ)< td=""></x<(150+3σ)<>		
	(130+3σ) ≤OL	(130+3σ) ≤OL	≤OL		
Hg	BL≤(700-3σ)<Χ	BL≤(700-3σ)<Χ	BL≤(500-3σ)<Χ		
	<(1300+3σ)≤OL	<(1300+3σ)≤OL	<(1500+3σ)≤OL		
Cr	BL≤(700-3σ)< X	BL≤(700-3σ)< X	BL≤(500-3σ)< X		
Br	BL≤(300-3σ)< X	/	BL≤(250-3σ)< X 🔬		
		ALL REAL PROPERTY AND A RE	RATER.		
	Pb Cd Hg Cr	Element Polymers Pb $BL \leq (700-3\sigma) < X$ $(1300+3\sigma) \leq OL$ $(130+3\sigma) \leq OL$ Cd $BL \leq (70-3\sigma) < X <$ $(130+3\sigma) \leq OL$ $BL \leq (700-3\sigma) < X$ Hg $BL \leq (700-3\sigma) < X$ Cr $BL \leq (700-3\sigma) < X$	$\begin{tabular}{ c c c c c } \hline Polymers & Metals \\ \hline Pb & BL \le (700-3\sigma) < X & BL \le (700-3\sigma) < X \\ < (1300+3\sigma) \le OL & <(1300+3\sigma) \le OL \\ \hline Cd & BL \le (70-3\sigma) < X < & BL \le (70-3\sigma) < X < \\ & (130+3\sigma) \le OL & (130+3\sigma) \le OL \\ \hline Hg & BL \le (700-3\sigma) < X & BL \le (700-3\sigma) < X \\ < (1300+3\sigma) \le OL & <(1300+3\sigma) \le OL \\ \hline Cr & BL \le (700-3\sigma) < X & BL \le (700-3\sigma) < X \\ \hline \end{array}$		

Note: BL

BL= Below the XRF screening limit

OL=Over the XRF screening limit

NTEK TIM

NTEKT

- X=The symbol"X"marks the region where further investigation is necessary.
- 3σ =The reproducibility of analytical instruments

NTEK TIM

ANTER THIN

NIEK

LOD= Detection limit

2. Chemical Test

writek Hill

WTEK TIN

NT EK TEIN

\$

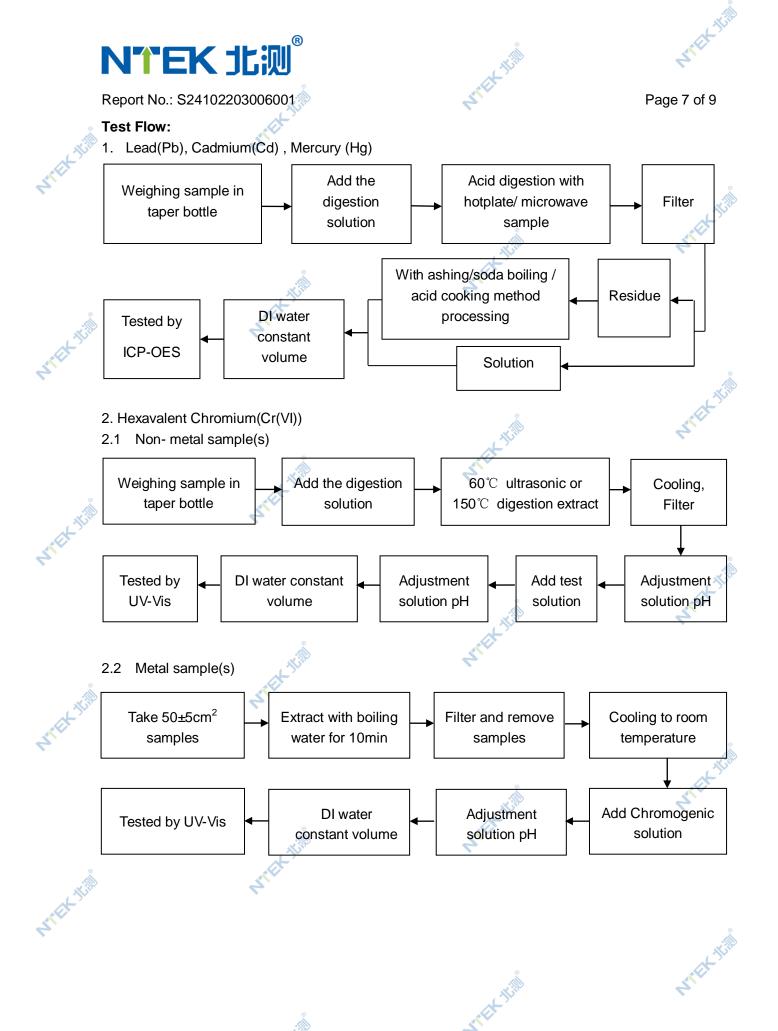
NTEK T

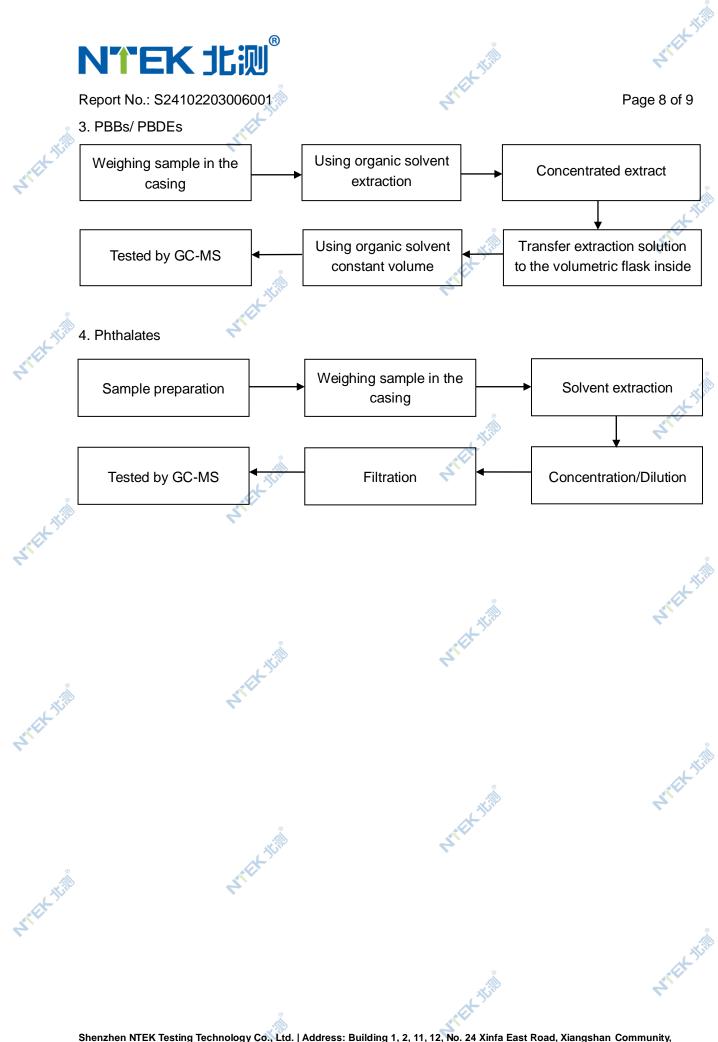
KYTEK TI

KYTEK JE

Page 6 of 9

WELT


with The


RATER HIN

TEK Hill	Test item	Test method	Test instrument	MDL	Limit△		
4	Lead (Pb)	IEC 62321-5:2013 Ed.1.0	ICP-OES	2 mg/kg	1000 mg/kg		
·	Cadmium (Cd)	IEC 62321-5:2013 Ed.1.0	ICP-OES	2 mg/kg	100 mg/kg		
	Mercury (Hg)	IEC 62321-4:2013+AMD1:2017	ICP-OES	2 mg/kg	1000 mg/kg		
	Hexavalent	IEC 62321-7-1:2015 Ed.1.0	UV-Vis	0.10 µg/cm ²	1000 mg/kg		
	Chromium(Cr(VI))	IEC 62321-7-2:2017 Ed.1.0		8 mg/kg	1000 mg/kg		
	Polybrominated Biphenyls(PBBs)	IEC 62321-6:2015 Ed.1.0	GC-MS	5 mg/kg	1000 mg/kg		
WIELT	Polybrominated, Diphenyl Ethers(PBDEs)	IEC 62321-6:2015 Ed.1.0	GC-MS	5 mg/kg	1000 mg/kg		
	Bis-(2-ethylhexyl) Phthalate (DEHP)	IEC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
	Benzyl butyl Phthalate (BBP)	IEC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
TEX TIM	Dibutyl Phthalate (DBP)	EC 62321-8:2017 Ed.1.0	GC-MS	30 mg/kg	1000 mg/kg		
N'EX.	Diisobutyl Phthalate (DIBP)		GC-MS	30 mg/kg	1000 mg/kg		
	^A The limit is quoted from RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.						
			A Trin		ATE:		
		At Will	ATTE.				

Shenzhen NTEK Testing Technology Co., Ltd. | Address: Building 1, 2, 11, 12, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China | Tel: +86-0755-2320 0050 | <u>http://www.ntek.org.cn</u> Complaint Tel: +86-0755-23218370 | Complaint E-mail: complaint@ntek.org.cn

NTEK TE

Shenzhen NTEK Testing Technology Co., Ltd. | Address: Building 1, 2, 11, 12, No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China | Tel: +86-0755-2320 0050 | <u>http://www.ntek.org.cn</u> Complaint Tel: +86-0755-23218370 | Complaint E-mail: complaint@ntek.org.cn

NTEK W

NTEK W

NTEK JU

ATEK 15

NTEK W

NTEK TE

Page 9 of 9

Fig.1 Finished photo

NIE

WTEK TIM

NTEK TE

WTEX Til

Fig.2

****End of Report***

The test results or data in this report will be used only for education, scientific research, enterprise product development and internal quality control or other purposes.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of NTEK, this report can't be reproduced except in full.